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ABSTRACT

Training large scale neural networks typically involves sharing gradients between all accelerators,
which necessitates specialized, high-speed interconnects. To address this, we introduce DisTrO, a
family of architecture-agnostic and network-agnostic distributed optimizers that reduces the inter-
GPU communication requirements by four to five orders of magnitude without relying on amortized
analysis, enabling low-latency training of large neural networks on slow internet bandwidths with
heterogeneous networking hardware. In this preliminary report we are excited to show the first and
earliest empirical proof that DisTrO-AdamW matches standard AdamW+All-Reduce in convergence
rate while massively reducing the required bandwidth during pre-training of a 1.2B LLM. When
using Distributed Data Parallelism, DisTrO may enable future large scale foundation model training
to bypass the need for high-speed interconnects entirely.

1 Introduction

Large language models (LLMs) and large diffusion models (LDMs) are currently computationally expensive to train
due to their high parameter count1, which requires the use of multiple accelerators (e.g. GPUs, TPUs) to make training
tractable. Various methods exist to split the training among these accelerators, such as Distributed Data Parallelism
(DDP) [10] and Fully Sharded Data Parallelism (FSDP) [26]. These methods typically maintain the paradigm of
synchronously training a single model. To achieve this, though, the full gradients produced by each training step must
be synchronized between the accelerators, which requires extremely high bandwidth interconnects between every
accelerator. Thus, each training step involves sharing vast amounts of data2 across perhaps thousands of accelerators.

Given the current bandwidth requirements, GPUs must be physically close to one another and be hardwired together as a
single "super cluster" with specialized high-speed interconnects. Building data centers that can accommodate thousands
of interconnected GPUs requires massive up-front capital expenditures, recurring costs, and dedicated infrastructure for
land, power and cooling. Today, only governments and large tech companies in wealthy countries have the capital and
human resources to train LLMs and LDMs.

In this preliminary report, we show the very first empirical proof that not only is it possible to train large neural networks
over a highly constrained bandwidth scenario, but that an optimizer can be designed to match AdamW in convergence

1As of late 2024, it is not uncommon to talk about models with trillions of parameters.
2The size of the gradients shared across all GPUs when using DDP is roughly in the order of the model parameter size multiplied

by the number of GPUs where the model is duplicated across.
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rate, all while reducing the required inter-GPU communication requirements by four to five orders of magnitude during
pre-training and fine-tuning.

Our Distributed Training Over-the-Internet (DisTrO) family of optimizers massively reduces inter-GPU communication
requirements for each training step without using amortization, enabling low latency, efficient and no-compromise
pre-training of large neural networks over consumer-grade internet connections using heterogeneous networking
hardware. DisTrO is general, scalable and clock-synchronous3. In contrast to previous ad-hoc low-communication
optimizers (e.g. [12] [11] [20] [16] [8] [3] [25]), DisTrO is also agnostic to the telecommunication network’s topology
and the neural network architecture while natively supporting distributed data parallel training (DDP) with minimal
overhead.

Currently, we do not fully understand the theory behind the unexpected and unreasonable effectiveness of DisTrO,
but a more rigorous and fully detailed academic paper is in progress, where we hope to derive a unified theory of
distributed training regarding dense4 neural networks. As we narrow in on the frontier of the absolute minimum
necessary communication required to train a model, we see the potential for the formulation of a more generalized
information-theoretic description of neural net training.

Additionally, in our commitment to open research, we plan to release both the code and the complete methodology
alongside the detailed paper at https://github.com/NousResearch/DisTrO.

2 1.2B LLM Pre-training

Figure 1: Training loss comparison between a pre-trained 1.2B LLM using All-Reduce versus DisTrO trained to 105B
tokens for 25000 steps.

For training, we used the Nanotron [6] pre-training framework and only operate under the Distributed Data Parallelism
strategy, where each GPU has the entire model loaded in VRAM. In this scenario, every GPU can be considered to be
an accelerator node. Since it is widely adopted within the open source LLM community, we used the Llama 2 [18]
LLM architecture, scaled down to a 1.2B parameter size. Model and training hyper-parameters are given in Table 1. For
training data we used the first 105B tokens of a randomly shuffled 10% representative sampling of the Dolma v1.7 [17]5

dataset. For the optimizer, we used AdamW with β1 = 0.9, β2 = 0.95 and a peak learning rate of 4× 10−4 decayed
with a cosine decay schedule. Weight decay was set to 0.1.

For the DisTrO training run, we swapped out AdamW with DisTrO-AdamW without changing hyper-parameters and
disabled every instance of the All-Reduce operation in Nanotron. Unlike previous distributed training methods, DisTrO
does not synchronize optimizer states (and has a stateless client variant, but the method tested here is stateful). In

3By clock-synchronous, we mean that DisTrO is similar to SGD, Adam, etc., where each training step uses the same arithmetic
operations and takes the same amount of time.

4In contrast to sparse neural networks such as mixture-of-experts (MoEs).
5https://huggingface.co/datasets/emozilla/dolma-v1_7-305B
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Figure 1 and Table 3, we show empirical proof that DisTrO matches standard training in loss while massively reducing
the inter-node bandwidth required.

Table 1: Model hyper-parameters

1.2B
Layers 16
Hidden Size 2048
Intermediate Size 8192
Attention Heads 8
Key/Value Heads 8
Activation Function SwiGLU
Vocab Size 32000
Positional Embeddings RoPE (θ = 10000)
Peak Learning Rate 4× 10−4

Decay Learning Rate 4× 10−5

Decay Schedule Cosine
Warmup Steps 400
Total Steps 25000
Sequence Length 2048
Batch Size 2048 (4M tokens)
Total Tokens 104.8576B

For validation, we performed the GPT4All ([2] [19] [23] [13] [1] [15] [14]) zero-shot benchmarks on our trained
models. We also compared against a checkpoint6 of TinyLlama [24] trained on the same number of tokens. We chose
TinyLlama as a measure for sanity checking our results given that its architecture and training process was very similar
to ours. The results are shown in Table 2 and further confirms that DisTrO matches industry-standard training.

Table 2: Evaluation score comparison between pre-trained LLMs using All-Reduce versus DisTrO trained to 105B tokens, with an
intermediate TinyLlama checkpoint used as a sanity check

Model Model Size Tokens ARC-c ↑ ARC-easy ↑ Hellaswag ↑
All-Reduce + AdamW 1.2B 105B 24.5 47.6 43.3
DisTrO + AdamW 1.2B 105B 24.9 46.2 47.3
TinyLlama 1.1B 105B 24.2 44.9 43.6

OpenBookQA ↑ PIQA ↑ WinoGrande ↑
All-Reduce + AdamW 1.2B 105B 29.0 69.5 51.6
DisTrO + AdamW 1.2B 105B 30.6 71.7 54.1
TinyLlama 1.1B 105B 30.0 67.5 53.7

Table 3: Training performance comparison between a pre-trained 1.2B LLMs using All-Reduce versus DisTrO trained to 105B
tokens

Model GPUs Wall Time ↓ Receive / Step ↓ Reduction ↑ Final Loss ↓
All-Reduce + AdamW 32xH100 17.1 Hours 74.4 GB 1x 2.449
DisTrO + AdamW 32xH100 19.8 Hours 86.8 MB 857x 2.373

3 Discussion

While this initial training run shows a 857x reduction of bandwidth requirements when using DisTrO-AdamW as
a drop-in replacement to AdamW+All-Reduce, our preliminary tests indicate that it is possible to get a bandwidth
requirements reduction of up to 1000x to 3000x during the pre-training of a 1.2B LLM if hyper-parameters are chosen

6https://huggingface.co/TinyLlama/TinyLlama-1.1B-step-50K-105b
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carefully. For post-training and fine-tuning, we can achieve up to 10000x without any noticeable degradation in loss.
More experiments are on-going.

3.1 Data Streaming

In a naive peer-to-peer scenario with 32 nodes, a 857x reduction in bandwidth means that at every step, each node has
to transmit on average 2.8MB×31 = 86.8MB, and receive the same amount of data, as shown in Table 3. However, if
there are dedicated servers for data aggregation, one can get away with only uploading 2.8MB of data per step, while
receiving 86.8MB. A hybrid approach might also work. This asymmetry is advantageous since most consumer internet
bandwidth is heavily skewed towards bigger download speeds. Assuming a stable internet speed of 100Mbps download
and 10Mbps upload, the worst-case latency is only 6.94s for downloading and 2.24s for uploading, creating a total
network latency of 6.94s per step. Future research into compression could further improve latency, as we currently do
not use any compression and transmit the tensors directly.

3.2 Bandwidth Scaling

We do not yet know whether the ratio of bandwidth reduction scales up, down or stays constant as model size increases.
We hypothesize that the bandwidth reduction may indeed increase (i.e. relatively less and less communication is needed
as model size grows). We base this on the observation that the 1.2B model seems to be the smallest size that we found
that DisTrO works with consistently. Smaller models7 do not converge as well with DisTrO. Further research into this
area should tell us how this bandwidth reduction scales with respect to an increasing model size.

In addition, given that the amount of data between accelerators is decoupled from the model size, a new possible
scaling law arises: one where the model size is increased without increasing the communication bandwidth. It would
be interesting to see whether a larger model improves loss and learning even when bandwidth stays constant8. From
our very early experiments, we speculate that this might be the case. If true, it would be possible that we see a future
paradigm shift into designing and manufacturing bigger GPUs with larger VRAM and narrower interconnects, where
we favor compute-heavy workloads over I/O-heavy operations, since scaling up the bandwidth of GPU interconnections
incurs higher costs compared to adding more compute within a GPU.

3.3 Future Applications and Implications

While we have only demonstrated DisTrO’s convergence specifically for LLM training, there are strong indications
that DisTrO can also be used for training other large foundational models such as Diffusion Models. Lastly, we will
consider potential applications of DisTrO and suggest possible implications for the wider AI ecosystem. We caution
that such prognostications are largely aspirational and serve merely to spark the imagination of what may be possible.

3.3.1 Federated Learning

Federated learning [12] is a sub-field of machine learning that promises to allow collaborative training of models while
keeping each participant’s data private and decentralized. This field has seen a recent surge in popularity due to concerns
about how data privacy has almost gone extinct in the foundational LLM space, given the training requirements of such
models. However, until now, federated learning was held back by a lack of efficient and compromise-free methods of
training large models over the limited bandwidth of the internet.

While we do not focus on the data privacy aspect of training, DisTrO imposes no requirements on how the data is
processed or assigned to individual GPU nodes, and has a stateless variant (similar to Federated Averaging), thus can be
adapted for federated learning in the future. For the first time, we see the practical feasibility of applying federated
learning to efficiently train frontier LLMs over the internet.

3.3.2 Decentralized Training

Furthermore, DisTrO enables the creation of a fully decentralized and permissionless network to collaborate and pool
resources. Evidence suggests that when implemented, DisTrO is remarkably resilient to a small amount of degraded9 or
dropped nodes during training, and it can be easily made to accommodate new nodes joining.

7We have tested 50M and 300M model sizes pre-trained for 10B tokens.
8For example, increasing the model size from 1.2B to 12B while keeping the amount of data transmitted at a constant 100MB per

step.
9A degraded node is a node that returns incorrect information during training due to software or hardware issues.
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Cryptographic primitives and incentive structures could be layered on to recruit participants and mitigate risks of
non-trusted nodes damaging a run using adversarial attacks. Of course, the introduction of such mechanisms creates
overhead on the system, and the balancing of these levers remains a topic for exploration. However, if done correctly, the
flexible nature of the design could unlock latent computing resources by minimizing the opportunity cost of contributing
to a training run, which in turn, economically incentivizes both institutions and individuals to contribute their compute.

As the DisTrO optimizer promises to activate latent compute resources, it could also activate thought-to-be-obsolete
training hardware for training runs (assuming certain advancements happen). As of now, consumer-grade or older
generations of accelerators with smaller amounts of memory10 may be used to train smaller sized models, but they
cannot be easily used on larger models. Adapting strategies like FSDP [26], SWARM Parallelism [14] and/or [22] to
work in tandem with DisTrO to accommodate hardware with smaller amounts of memory would unlock a swath of
untapped resources. This could be one major step forward in creating the first virtual and fully heterogeneous GPU
cluster.

3.3.3 Environmental Impacts

A further application of DisTrO at scale may be to relieve some of the issues related to energy consumption, infrastructure
costs and land use that massive data centers create. The Llama 3.1 project required the construction of two massive
monolithic super-clusters of 24,000 H100 GPUs each [9], and produced around 11,000 metric tons of CO2 equivalent [4]
just for the training process, without accounting for indirect CO2 equivalent emissions from auxiliary processes. Newer
models, even of the same parameter size, will consume much more resources for training due to their ever-growing data
corpus [21].

Today, AI related data centers have tested the limits of modern power grids (for example, Ireland’s EirGrid has had to
reconsider their ability to host new constructions [5]). This energy strain makes renewable power sources less likely
to meet a grid’s needs, as clean energy can be more susceptible to fluctuations in production. DisTrO can be used
to adaptively balance multiple smaller modular data centers that use excess capacity, similar to how Bitcoin mining
operations have created infrastructure to make efficient use of surging power grids and underutilized green energy [7].
Tapping into pre-existing infrastructure with a dynamically balanced training technique can lessen the negative impacts
of training on the environment.

3.4 Closing Remarks

By breaking down barriers of centralized compute and reducing inter-GPU communication requirements, DisTrO may
open up opportunities for widespread participation and collaboration on global AI projects. This shift could not only
democratize access to cutting-edge AI technology, but also enhance resiliency by distributing the computational load
across multiple nodes, minimizing single points of failure.

As we move forward into this era of decentralized AI, it is crucial to recognize that decentralization is a force for
good, promoting transparency, accountability, and ultimately, greater innovation. By harnessing the power of idle
compute resources worldwide and fostering open-source collaboration, we can unlock unprecedented advancements in
AI research, development, and deployment.

We invite researchers interested in exploring these to areas to join us in our quest.
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